

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	TravisPy 0.3.5 documentation

TravisPy

TravisPy is a Python API for Travis CI. It follows the official API [http://docs.travis-ci.com/api/] and is implemented as
similar as possible to Ruby [https://github.com/travis-ci/travis.rb#ruby-library] implementation.

Experimental methods will not be supported until they become official.

For full documentation please refer to Travis CI official API [http://docs.travis-ci.com/api/] documentation.

[image: Latest Version]
 [https://pypi.python.org/pypi/TravisPy][image: License]
 [http://www.gnu.org/licenses/gpl-3.0-standalone.html][image: Build status]
 [https://travis-ci.org/menegazzo/travispy][image: Coveralls]
 [https://coveralls.io/r/menegazzo/travispy]
Install

To install TravisPy all it takes is one command line:

pip install travispy

Documentation

	Getting started

	API

	Entities

Support

Need help? Click here [https://github.com/menegazzo/travispy/issues?state=open] and open a new issue. You’ll get your answer ASAP.

Contribute

TravisPy is under development, so if you want to join the team, you are welcome.

	Feel free to open issues [https://github.com/menegazzo/travispy/issues?state=open] related to bugs or ideas.

	If you are a developer:
	Fork TravisPy before making any changes.

	Write tests.

	Create a Pull Request so changes can be merged.

License

TravisPy is licensed under GPL v3.0 license [http://www.gnu.org/licenses/gpl-3.0-standalone.html].

 Copyright 2014, Fabio Menegazzo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TravisPy 0.3.5 documentation

Getting started

TravisPy works just as Travis CI: it authenticates against GitHub. So as a requirement [http://docs.travis-ci.com/api/#external-apis] you
must have a GitHub access token [https://github.com/settings/applications] with the following scopes:

	read:org

	user:email

	repo_deployment

	repo:status

	write:repo_hook

With your token in hands all is easy:

>>> from travispy import TravisPy
>>> t = TravisPy.github_auth(<your_github_token>)
>>> user = t.user()
>>> user
<travispy.entities.user.User object at 0x02C26C48>

Now you can access information related to user current logged in:

>>> user.login
'travispy'
>>> user['login']
'travispy'

To get the list of repositories that you are member of:

>>> repos = t.repos(member=user.login)
>>> len(repos) # Ordered by recent activity
5
>>> repos[0]
<travispy.entities.repo.Repo object at 0x02C26C49>
>>> repos[0].slug
'travispy/on_py34'

Or simply request for repository you want:

>>> repo = t.repo('travispy/on_py34')
<travispy.entities.repo.Repo object at 0x02C26C51>

And finally, getting build information:

>>> build = t.build(repo.last_build_id)
>>> build
<travispy.entities.build.Build object at 0x02C26C50>
>>> build.restart()
True
>>> build.cancel()
True
>>> build.cancel() # As build was already cancelled it will return False.
False

Please refer to the official API [http://docs.travis-ci.com/api/] to learn more about which entities [http://docs.travis-ci.com/api/#entities] are supported. Soon a
specific and detailed documentation related to this library will be available.

 Copyright 2014, Fabio Menegazzo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TravisPy 0.3.5 documentation

API

This document brings the public API of TravisPy.

	
travispy.travispy.PUBLIC = URI for Travis CI free service.

	

	
travispy.travispy.PRIVATE = URI for Travis CI paid service for GitHub private repositories.

	

	
travispy.travispy.ENTERPRISE = URI template for Travis CI service running under a personal domain. Usage will be
something like ENTERPRISE % {'domain': 'http://travis.example.com'}.

	

	
class travispy.travispy.TravisPy(token=None, uri='https://api.travis-ci.org')[source]

	Instances of this class are responsible for comunicating with Travis CI, sending requests and
handling responses properly. You can create as much instances as you want since each one will
create a separated session.

	Parameters:	
	token (str | None) – Travis CI token linked to your GitHub account.

Even if you have a public repository, some information are related to your user account
and not the repository itself so if token is not provided an error will be returned.

Required for private and enterprise repositories to access any information.

	uri (PUBLIC | PRIVATE | ENTERPRISE | str) – URI where Travis CI service is running.

Note

Do not confuse token with the one found on your profile page.

	
account(account_id)[source]

	

	Parameters:	account_id (int) – ID of the account to obtain information.

	Return type:	Account

Note

This request always needs to be authenticated.

	
accounts(all=False)[source]

	

	Parameters:	all (bool) – Whether or not to include accounts the user does not have admin access to.

	Return type:	list(Account)

	Returns:	Information of all accounts that the user might have access.This is usually the account
corresponding to the user directly and one account per GitHub organization.

Note

This request always needs to be authenticated.

	
branch(name, repo_id_or_slug, **kwargs)[source]

	

	Parameters:	
	name (str) – Branch name that should be retrieved.

	repo_id_or_slug (int | str) – Repository where branch is located.

	Return type:	Branch

	
branches(**kwargs)[source]

	

	Parameters:	
	repository_id (int) – Repository id the build belongs to.

	slug (str) – Repository slug the build belongs to.

	Return type:	list(Branch)

Note

You have to supply either repository_id or slug.

	
broadcasts()[source]

	

	Return type:	list(Broadcast)

Note

This request always needs to be authenticated.

	
build(build_id)[source]

	

	Parameters:	build_id (int) – ID of the build to obtain information.

	Return type:	Build

	
builds(**kwargs)[source]

	

	Parameters:	
	ids (list(int)) – List of build ids to fetch.

	repository_id (int) – Repository id the build belongs to.

	slug (str) – Repository slug the build belongs to.

	number (str) – Filter by build number, requires slug or repository_id.

	after_number (str) – List build after a given build number (use for pagination), requires slug or
repository_id.

	event_type (str) – Limit build to given event type (push or pull_request).

	Return type:	list(Build)

Note

You have to supply either ids, repository_id or slug.

	
classmethod github_auth(token, uri='https://api.travis-ci.org')[source]

	

	Parameters:	
	token (str) – GitHub access token.

	uri – See __init__()

	Return type:	TravisPy

	Returns:	A TravisPy instance authenticated with GitHub account.

	Raises:	TravisError – when authentication against GitHub fails.

	
hooks()[source]

	

	Return type:	list(Hook)

	Returns:	Returns list of existing hooks that user have access.

Note

This request always needs to be authenticated.

	
job(job_id)[source]

	

	Parameters:	job_id (int) – ID of the job to obtain information.

	Return type:	Job

	
jobs(**kwargs)[source]

	

	Parameters:	
	ids (list(int)) – List of jobs IDs.

	state (str) – Job state to filter by. Possible values are passed, canceled, failed and
errored.

	queue (str) – Job queue to filter by.

	Return type:	list(Job)

Note

You need to provide exactly one of the above parameters. If you provide state or
queue, a maximum of 250 jobs will be returned.

	
log(log_id)[source]

	

	Parameters:	log_id (int) – ID of the log to obtain information.

	Return type:	Log

	
repo(id_or_slug)[source]

	

	Parameters:	id_or_slug (int | str) – ID of slug of repository to obtain information.

	Return type:	Repo

	
repos(**kwargs)[source]

	

	Parameters:	
	ids (list(int)) – List of repository ids to fetch, cannot be combined with other parameters.

	member (str) – Filter by user that has access to it (GitHub login).

	owner_name (str) – Filter by owner name (first segment of slug).

	slug (str) – Filter by slug.

	search (str) – Filter by search term.

	active (bool) – If True, will only return repositories that are enabled. Default is False.

	Return type:	list(Repo)

Note

If no parameters are given, a list of repositories with recent activity is returned.

	
user()[source]

	

	Return type:	User

	Returns:	Information about user currently logged in.

Note

This request always needs to be authenticated.

 Copyright 2014, Fabio Menegazzo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	TravisPy 0.3.5 documentation

Entities

This document brings information about all entities that are used by TravisPy API.

	
class travispy.entities._entity.Entity(session)[source]

	Base class for all Travis CI entities.

	Parameters:	session (Session) – Internet session in which entity information will be requested.

	Variables:	id (int) – The entity ID.

	
classmethod find_many(session, **kwargs)[source]

	Method responsible for returning as many as possible matches for current class.

	Parameters:	session (Session) – Session that must be used to search for results.

	Return type:	list(Entity)

	Raises:	TravisError – when response has status code different than 200.

	
classmethod find_one(session, entity_id, **kwargs)[source]

	Method responsible for returning exactly one instance of current class.

	Parameters:	
	session (Session) – Session that must be used to search for result.

	entity_id (int) – The ID of the entity.

	Return type:	Entity

	Raises:	TravisError – when response has status code different than 200.

	
classmethod many()[source]

	

	Return type:	str

	Returns:	String representation for multiple entities.
Example: for Account will be accounts.

	
classmethod one()[source]

	

	Return type:	str

	Returns:	String representation for a single entity.
Example: for Account will be account.

	
class travispy.entities._stateful.Stateful(session)[source]

	Bases: travispy.entities._entity.Entity

Base class for stateful entities such as Repo, Build and Job.

	
CANCELED

	Constant representing state canceled. Should not be changed.

	
CREATED

	Constant representing state created. Should not be changed.

	
QUEUED

	Constant representing state queued. Should not be changed.

	
STARTED

	Constant representing state started. Should not be changed.

	
PASSED

	Constant representing state passed. Should not be changed.

	
FAILED

	Constant representing state failed. Should not be changed.

	
ERRORED

	Constant representing state errored. Should not be changed.

	
READY

	Constant representing state ready. Should not be changed.

	
GREEN

	Constant representing state color green. Should not be changed.

	
YELLOW

	Constant representing state color yellow. Should not be changed.

	
RED

	Constant representing state color red. Should not be changed.

	Variables:	state (str) – Current state. Possible values are:

	CANCELED

	CREATED

	QUEUED

	STARTED

	PASSED

	FAILED

	ERRORED

	READY

	
canceled

	

	Return type:	bool

	Returns:	True if build process was canceled.

See also

check_state()

	
check_state()[source]

	Method responsible for checking and validating current state.

	Raises:	
	AttributeError – when state does not exist.

	ValueError – when state value is not supported.

	
color

	

	Return type:	bool

	Returns:	The color related to current build state. Possible values are:

	GREEN: when build has passed or it is ready.

	YELLOW: when build process is running.

	RED: when build has failed somehow.

	
created

	

	Return type:	bool

	Returns:	True if entity build process was created successfully.

See also

check_state()

	
errored

	

	Return type:	bool

	Returns:	True if build process got errors.

See also

check_state()

	
failed

	

	Return type:	bool

	Returns:	True if build process failed. This is usually related to failures on tests.

See also

check_state()

	
finished

	

	Return type:	bool

	Returns:	True if build process is finished.

	
green

	

	Return type:	bool

	Returns:	True if build color is GREEN.

	
passed

	

	Return type:	bool

	Returns:	True if build process was finished successfully.

See also

check_state()

	
pending

	

	Return type:	bool

	Returns:	True if build was scheduled but was not finished.

See also

check_state()

	
queued

	

	Return type:	bool

	Returns:	True if entity was already queued sometime in the build process.

See also

check_state()

	
ready

	

	Return type:	bool

	Returns:	True if build process is ready.

See also

check_state()

	
red

	

	Return type:	bool

	Returns:	True if build color is RED.

	
running

	

	Return type:	bool

	Returns:	True if build process is running.

See also

check_state()

	
started

	

	Return type:	bool

	Returns:	True if entity was already started sometime in the build process.

See also

check_state()

	
successful

	
See also

passed

	
unsuccessful

	

	Return type:	bool

	Returns:	True if build process was finished unsuccessfully.

	
yellow

	

	Return type:	bool

	Returns:	True if build color is YELLOW.

	
class travispy.entities._restartable.Restartable(session)[source]

	Bases: travispy.entities._stateful.Stateful

Base class for restartable entities such as Build and Job.

	
cancel()[source]

	Method responsible for canceling current action of this object.

	Return type:	bool

	Returns:	True if cancel request was send successfuly to Travis CI.

	
restart()[source]

	Method responsible for restarting the last action executed by this action.

	Return type:	bool

	Returns:	True if restart request was send successfuly to Travis CI.

	
class travispy.entities.Account(session)[source]

	Bases: travispy.entities._entity.Entity

A user might have access to multiple accounts. This is usually the account corresponding to the
user directly and one account per GitHub organization.

	Variables:	
	name (str) – User or organization id.

	login (str) – Account name on GitHub.

	type (str) – Account login on GitHub.

	repos_count (int) – Number of repositories.

	subscribed (bool) – Whether or not the account has a valid subscription.
Only available on Travis Pro.

	avatar_url (str) – Link to avatar.

	
class travispy.entities.Branch(session)[source]

	Bases: travispy.entities._stateful.Stateful

	Variables:	
	repository_id (int) – Repository ID.

	commit_id (str) – Commit ID.

	number (str) – Build number.

	config (dict) – Build config (secure values and ssh key removed). It comes from .travis.yml file.

	started_at (str) – Time the build was started.

	finished_at (str) – Time the build finished.

	duration (str) – Build duration. It might not correspond to finished_at - started_at if the
build was restarted at a later point.

	job_ids (list(int)) – List of job IDs in the build matrix.

	pull_request (bool) – Whether or not the build comes from a pull request.

	commit (Commit) – Commit information.

	
jobs

	

	Return type:	list(Job)

	Returns:	A list of Job objects with information related to current job_ids.

	
repository

	

	Return type:	Repo

	Returns:	A Repo object with information related to current repository_id.

	
class travispy.entities.Broadcast(session)[source]

	Bases: travispy.entities._entity.Entity

	Variables:	message (str) – Broadcast message.

	
class travispy.entities.Build(session)[source]

	Bases: travispy.entities._restartable.Restartable

	Variables:	
	repository_id (int) – Repository ID.

	commit_id (str) – Commit ID.

	number (str) – Build number.

	pull_request (bool) – Whether or not the build comes from a pull request.

	pull_request_title (str) – PR title if pull_request is True.

	pull_request_number (str) – PR number if pull_request is True.

	config (dict) – Build config (secure values and ssh key removed). It comes from .travis.yml file.

	started_at (str) – Time the build was started.

	finished_at (str) – Time the build finished.

	duration (str) – Build duration. It might not correspond to finished_at - started_at if the
build was restarted at a later point.

	job_ids (list(int)) – List of job IDs in the build matrix.

	jobs (list(Job)) – List of Job in the build matrix.

	commit (Commit) – Commit information.

	
repository

	

	Return type:	Repo

	Returns:	A Repo object with information related to current repository_id.

	
class travispy.entities.Commit(session)[source]

	Bases: travispy.entities._entity.Entity

There is no API endpoint for resolving commits, however commit data might be included in other
API entities, like Build or Job.

	Variables:	
	sha (str) – Commit SHA.

	branch (str) – Branch the commit is on.

	message (str) – Commit message.

	committed_at (str) – Commit date.

	author_name (str) – Author name.

	author_email (str) – Author email.

	committer_name (str) – Committer name.

	committer_email (str) – Committer email.

	compare_url (str) – Link to diff on GitHub.

	tag (str) – Tag name.

	pull_request_number (int) – Pull request number.

	
class travispy.entities.Hook(session)[source]

	Bases: travispy.entities._entity.Entity

	Variables:	
	name (str) – Hook name.

	description (str) – Hook description.

	owner_name (str) – Owner name.

	active (str) – Whether or not the hook is active.

	private (str) – Whether or not the hook is private.

	admin (bool) – Whether or not current user has administrator privileges.

	
class travispy.entities.Job(session)[source]

	Bases: travispy.entities._restartable.Restartable

	Variables:	
	build_id (int) – Build ID.

	repository_id (int) – Repository ID.

	commit_id (int) – Commit ID.

	log_id (int) – Log ID.

	number (str) – Job number.

	config (dict) – Job config (secure values and ssh key removed). It comes from .travis.yml file.

	started_at (str) – Time the job was started.

	finished_at (str) – Time the job finished.

	duration (str) – Job duration. It might not correspond to finished_at - started_at if the
job was restarted at a later point.

	queue (str) – Job queue.

	allow_failure (bool) – Whether or not the job state influences build state.

	annotation_ids (list(int)) – List of annotation IDs.

	commit (Commit) – Commit information.

	
build

	

	Return type:	Build

	Returns:	A Build object with information related to current build_id.

	
log

	

	Return type:	Log

	Returns:	A Log object with information related to current log_id.

	
repository

	

	Return type:	Repo

	Returns:	A Repo object with information related to current repository_id.

	
class travispy.entities.Log(session)[source]

	Bases: travispy.entities._entity.Entity

	Variables:	
	job_id (int) – Jod ID.

	type (str) –

	
body

	

	Return type:	str

	Returns:	The raw log text fetched on demand.

	
get_archived_log()[source]

	

	Return type:	str

	Returns:	The archived log.

	
job

	

	Return type:	Job

	Returns:	A Job object with information related to current job_id.

	
class travispy.entities.Repo(session)[source]

	Bases: travispy.entities._stateful.Stateful

	Variables:	
	slug (str) – Repository slug.

	description (str) – Description on GitHub.

	last_build_id (int) – Build ID of the last executed build.

	last_build_number (str) – Build number of the last executed build.

	last_build_state (str) – Build state of the last executed build.

	last_build_duration (str) – Build duration of the last executed build.

	last_build_started_at (str) – Build started at of the last executed build.

	last_build_finished_at (str) – Build finished at of the last executed build.

	github_language (str) – Language on GitHub.

	active (bool) – Whether or not the repository is active on Travis CI.

	
disable()[source]

	Disable Travis CI for the repository.

	Return type:	bool

	Returns:	True if API call was successful.
False if API call was unsuccessful.

	
enable()[source]

	Enable Travis CI for the repository

	Return type:	bool

	Returns:	True if API call was successful
False if API call was unsuccessful

	
last_build

	

	Return type:	Build

	Returns:	A Build object with information related to current last_build_id.

	
state

	Repo state is given through last_build_state.

See also

Stateful for state full documentation.

	
class travispy.entities.User(session)[source]

	Bases: travispy.entities._entity.Entity

	Variables:	
	login (str) – User login on GitHub.

	name (str) – User name on GitHub.

	email (str) – Primary email address on GitHub.

	gravatar_id (str) – Avatar ID.

	is_syncing (bool) – Whether or not user account is currently being synced.

	synced_at (str) – Last synced at.

	correct_scopes (bool) – Whether or not GitHub token has the correct scopes.

	channels (str) – Pusher channels for this user.

	created_at (str) – When account was created.

	locale (str) – User main locale.

	
sync()[source]

	Triggers a new sync with GitHub. Might return status 409 if user is currently syncing.

	Return type:	bool

	Returns:	True if sync request was send successfuly to Travis CI and response code is 200
False if a sync is already is progress

 Copyright 2014, Fabio Menegazzo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	TravisPy 0.3.5 documentation

 Python Module Index

 t

 			

 		
 t	

 	[image: -]
 	
 travispy	

 	
 	
 travispy.entities	

 	
 	
 travispy.entities._entity	

 	
 	
 travispy.entities._restartable	

 	
 	
 travispy.entities._stateful	

 	
 	
 travispy.travispy	

 Copyright 2014, Fabio Menegazzo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	TravisPy 0.3.5 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | J
 | L
 | M
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | Y

A

 	

 	Account (class in travispy.entities)

 	account() (travispy.travispy.TravisPy method)

 	

 	accounts() (travispy.travispy.TravisPy method)

B

 	

 	body (travispy.entities.Log attribute)

 	Branch (class in travispy.entities)

 	branch() (travispy.travispy.TravisPy method)

 	branches() (travispy.travispy.TravisPy method)

 	Broadcast (class in travispy.entities)

 	

 	broadcasts() (travispy.travispy.TravisPy method)

 	Build (class in travispy.entities)

 	build (travispy.entities.Job attribute)

 	build() (travispy.travispy.TravisPy method)

 	builds() (travispy.travispy.TravisPy method)

C

 	

 	cancel() (travispy.entities._restartable.Restartable method)

 	CANCELED (travispy.entities._stateful.Stateful attribute)

 	canceled (travispy.entities._stateful.Stateful attribute)

 	check_state() (travispy.entities._stateful.Stateful method)

 	

 	color (travispy.entities._stateful.Stateful attribute)

 	Commit (class in travispy.entities)

 	CREATED (travispy.entities._stateful.Stateful attribute)

 	created (travispy.entities._stateful.Stateful attribute)

D

 	

 	disable() (travispy.entities.Repo method)

E

 	

 	enable() (travispy.entities.Repo method)

 	ENTERPRISE (in module travispy.travispy)

 	Entity (class in travispy.entities._entity)

 	

 	ERRORED (travispy.entities._stateful.Stateful attribute)

 	errored (travispy.entities._stateful.Stateful attribute)

F

 	

 	FAILED (travispy.entities._stateful.Stateful attribute)

 	failed (travispy.entities._stateful.Stateful attribute)

 	find_many() (travispy.entities._entity.Entity class method)

 	

 	find_one() (travispy.entities._entity.Entity class method)

 	finished (travispy.entities._stateful.Stateful attribute)

G

 	

 	get_archived_log() (travispy.entities.Log method)

 	github_auth() (travispy.travispy.TravisPy class method)

 	

 	GREEN (travispy.entities._stateful.Stateful attribute)

 	green (travispy.entities._stateful.Stateful attribute)

H

 	

 	Hook (class in travispy.entities)

 	

 	hooks() (travispy.travispy.TravisPy method)

J

 	

 	Job (class in travispy.entities)

 	job (travispy.entities.Log attribute)

 	job() (travispy.travispy.TravisPy method)

 	

 	jobs (travispy.entities.Branch attribute)

 	jobs() (travispy.travispy.TravisPy method)

L

 	

 	last_build (travispy.entities.Repo attribute)

 	Log (class in travispy.entities)

 	

 	log (travispy.entities.Job attribute)

 	log() (travispy.travispy.TravisPy method)

M

 	

 	many() (travispy.entities._entity.Entity class method)

O

 	

 	one() (travispy.entities._entity.Entity class method)

P

 	

 	PASSED (travispy.entities._stateful.Stateful attribute)

 	passed (travispy.entities._stateful.Stateful attribute)

 	pending (travispy.entities._stateful.Stateful attribute)

 	

 	PRIVATE (in module travispy.travispy)

 	PUBLIC (in module travispy.travispy)

Q

 	

 	QUEUED (travispy.entities._stateful.Stateful attribute)

 	

 	queued (travispy.entities._stateful.Stateful attribute)

R

 	

 	READY (travispy.entities._stateful.Stateful attribute)

 	ready (travispy.entities._stateful.Stateful attribute)

 	RED (travispy.entities._stateful.Stateful attribute)

 	red (travispy.entities._stateful.Stateful attribute)

 	Repo (class in travispy.entities)

 	repo() (travispy.travispy.TravisPy method)

 	

 	repos() (travispy.travispy.TravisPy method)

 	repository (travispy.entities.Branch attribute)

 	

 	(travispy.entities.Build attribute)

 	(travispy.entities.Job attribute)

 	restart() (travispy.entities._restartable.Restartable method)

 	Restartable (class in travispy.entities._restartable)

 	running (travispy.entities._stateful.Stateful attribute)

S

 	

 	STARTED (travispy.entities._stateful.Stateful attribute)

 	started (travispy.entities._stateful.Stateful attribute)

 	state (travispy.entities.Repo attribute)

 	

 	Stateful (class in travispy.entities._stateful)

 	successful (travispy.entities._stateful.Stateful attribute)

 	sync() (travispy.entities.User method)

T

 	

 	TravisPy (class in travispy.travispy)

 	travispy (module)

 	travispy.entities (module)

 	travispy.entities._entity (module)

 	

 	travispy.entities._restartable (module)

 	travispy.entities._stateful (module)

 	travispy.travispy (module)

U

 	

 	unsuccessful (travispy.entities._stateful.Stateful attribute)

 	User (class in travispy.entities)

 	

 	user() (travispy.travispy.TravisPy method)

Y

 	

 	YELLOW (travispy.entities._stateful.Stateful attribute)

 	

 	yellow (travispy.entities._stateful.Stateful attribute)

 Copyright 2014, Fabio Menegazzo.
 Created using Sphinx 1.3.5.

 _modules/travispy/entities/log.html

 Navigation

 		
 index

 		
 modules |

 		TravisPy 0.3.5 documentation »

 		Module code »

 Source code for travispy.entities.log

from ._entity import Entity

[docs]class Log(Entity):
 '''
 :ivar int job_id:
 Jod ID.

 :ivar str type:
 '''

 __slots__ = [
 'job_id',
 '_body',
 'type',
]

 def __init__(self, session):
 super(Log, self).__init__(session)
 self._body = None

[docs] def get_archived_log(self):
 '''
 :rtype: str
 :returns:
 The archived log.
 '''
 header_overrides = {
 'Accept': 'text/plain; version=2'
 }

 r = self._session.get(
 self._session.uri + ('/jobs/%s/log' % self.job_id),
 headers=header_overrides,
)
 return r.content.decode('utf-8')

 @property
 def body(self):
 '''
 :rtype: str
 :returns:
 The raw log text fetched on demand.
 '''
 if self._body is None:
 self._body = self.get_archived_log()

 return self._body

 @property
 def job(self):
 '''
 :rtype: :class:`.Job`
 :returns:
 A :class:`.Job` object with information related to current ``job_id``.
 '''
 from .job import Job
 return self._load_one_lazy_information(Job)

 © Copyright 2014, Fabio Menegazzo.
 Created using Sphinx 1.3.5.

_modules/travispy/entities/_stateful.html

 Navigation

 		
 index

 		
 modules |

 		TravisPy 0.3.5 documentation »

 		Module code »

 Source code for travispy.entities._stateful

from ._entity import Entity

[docs]class Stateful(Entity):
 '''
 Base class for stateful entities such as :class:`.Repo`, :class:`.Build` and :class:`.Job`.

 .. attribute:: CANCELED

 Constant representing state ``canceled``. Should not be changed.

 .. attribute:: CREATED

 Constant representing state ``created``. Should not be changed.

 .. attribute:: QUEUED

 Constant representing state ``queued``. Should not be changed.

 .. attribute:: STARTED

 Constant representing state ``started``. Should not be changed.

 .. attribute:: PASSED

 Constant representing state ``passed``. Should not be changed.

 .. attribute:: FAILED

 Constant representing state ``failed``. Should not be changed.

 .. attribute:: ERRORED

 Constant representing state ``errored``. Should not be changed.

 .. attribute:: READY

 Constant representing state ``ready``. Should not be changed.

 .. attribute:: GREEN

 Constant representing state color ``green``. Should not be changed.

 .. attribute:: YELLOW

 Constant representing state color ``yellow``. Should not be changed.

 .. attribute:: RED

 Constant representing state color ``red``. Should not be changed.

 :ivar str state:

 Current state. Possible values are:

 - :attr:`.CANCELED`
 - :attr:`.CREATED`
 - :attr:`.QUEUED`
 - :attr:`.STARTED`
 - :attr:`.PASSED`
 - :attr:`.FAILED`
 - :attr:`.ERRORED`
 - :attr:`.READY`
 '''

 __slots__ = ['state']

 # States ---
 CANCELED = 'canceled'
 CREATED = 'created'
 ERRORED = 'errored'
 FAILED = 'failed'
 PASSED = 'passed'
 QUEUED = 'queued'
 READY = 'ready'
 STARTED = 'started'

 # Colors ---
 GREEN = 'green'
 YELLOW = 'yellow'
 RED = 'red'

 @property
 def created(self):
 '''
 :rtype: bool
 :returns:
 ``True`` if entity build process was created successfully.

 .. seealso:: :meth:`.check_state`
 '''
 self.check_state()
 return hasattr(self, 'state')

 @property
 def queued(self):
 '''
 :rtype: bool
 :returns:
 ``True`` if entity was already queued sometime in the build process.

 .. seealso:: :meth:`.check_state`
 '''
 self.check_state()
 return self.state != self.CREATED

 @property
 def started(self):
 '''
 :rtype: bool
 :returns:
 ``True`` if entity was already started sometime in the build process.

 .. seealso:: :meth:`.check_state`
 '''
 self.check_state()
 return self.state not in [self.CREATED, self.QUEUED]

 @property
 def passed(self):
 '''
 :rtype: bool
 :returns:
 ``True`` if build process was finished successfully.

 .. seealso:: :meth:`.check_state`
 '''
 self.check_state()
 return self.state == self.PASSED

 @property
 def failed(self):
 '''
 :rtype: bool
 :returns:
 ``True`` if build process failed. This is usually related to failures on tests.

 .. seealso:: :meth:`.check_state`
 '''
 self.check_state()
 return self.state == self.FAILED

 @property
 def errored(self):
 '''
 :rtype: bool
 :returns:
 ``True`` if build process got errors.

 .. seealso:: :meth:`.check_state`
 '''
 self.check_state()
 return self.state == self.ERRORED

 @property
 def canceled(self):
 '''
 :rtype: bool
 :returns:
 ``True`` if build process was canceled.

 .. seealso:: :meth:`.check_state`
 '''
 self.check_state()
 return self.state == self.CANCELED

 @property
 def ready(self):
 '''
 :rtype: bool
 :returns:
 ``True`` if build process is ready.

 .. seealso:: :meth:`.check_state`
 '''
 self.check_state()
 return self.state == self.READY

 @property
 def pending(self):
 '''
 :rtype: bool
 :returns:
 ``True`` if build was scheduled but was not finished.

 .. seealso:: :meth:`.check_state`
 '''
 self.check_state()
 return self.state in [self.CREATED, self.STARTED, self.QUEUED]

 @property
 def running(self):
 '''
 :rtype: bool
 :returns:
 ``True`` if build process is running.

 .. seealso:: :meth:`.check_state`
 '''
 self.check_state()
 return self.state == self.STARTED

 @property
 def finished(self):
 '''
 :rtype: bool
 :returns:
 ``True`` if build process is finished.
 '''
 return not self.pending

 @property
 def successful(self):
 '''
 .. seealso:: :attr:`.passed`
 '''
 return self.passed

 @property
 def unsuccessful(self):
 '''
 :rtype: bool
 :returns:
 ``True`` if build process was finished unsuccessfully.
 '''
 return self.errored or self.failed or self.canceled

 @property
 def color(self):
 '''
 :rtype: bool
 :returns:
 The color related to current build state. Possible values are:

 - :attr:`.GREEN`: when build has passed or it is ready.
 - :attr:`.YELLOW`: when build process is running.
 - :attr:`.RED`: when build has failed somehow.
 '''
 if self.passed or self.ready:
 return self.GREEN

 elif self.pending:
 return self.YELLOW

 elif self.unsuccessful:
 return self.RED

 @property
 def green(self):
 '''
 :rtype: bool
 :returns:
 ``True`` if build :attr:`.color` is :attr:`.GREEN`.
 '''
 return self.color == self.GREEN

 @property
 def yellow(self):
 '''
 :rtype: bool
 :returns:
 ``True`` if build :attr:`.color` is :attr:`.YELLOW`.
 '''
 return self.color == self.YELLOW

 @property
 def red(self):
 '''
 :rtype: bool
 :returns:
 ``True`` if build :attr:`.color` is :attr:`.RED`.
 '''
 return self.color == self.RED

[docs] def check_state(self):
 '''
 Method responsible for checking and validating current :attr:`.state`.

 :raises AttributeError: when :attr:`.state` does not exist.
 :raises ValueError: when :attr:`.state` value is not supported.
 '''
 if self.state not in [
 self.CANCELED,
 self.CREATED,
 self.ERRORED,
 self.FAILED,
 self.PASSED,
 self.QUEUED,
 self.READY,
 self.STARTED,
]:
 raise ValueError('unknown state %s for %s' % (self.state, self.__class__.__name__))

 © Copyright 2014, Fabio Menegazzo.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_modules/travispy/entities/hook.html

 Navigation

 		
 index

 		
 modules |

 		TravisPy 0.3.5 documentation »

 		Module code »

 Source code for travispy.entities.hook

from ._entity import Entity

[docs]class Hook(Entity):
 '''
 :ivar str name:
 Hook name.

 :ivar str description:
 Hook description.

 :ivar str owner_name:
 Owner name.

 :ivar str active:
 Whether or not the hook is active.

 :ivar str private:
 Whether or not the hook is private.

 :ivar bool admin:
 Whether or not current user has administrator privileges.
 '''

 __slots__ = [
 'name',
 'description',
 'owner_name',
 'active',
 'private',
 'admin',
]

 © Copyright 2014, Fabio Menegazzo.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_modules/travispy/entities/broadcast.html

 Navigation

 		
 index

 		
 modules |

 		TravisPy 0.3.5 documentation »

 		Module code »

 Source code for travispy.entities.broadcast

from ._entity import Entity

[docs]class Broadcast(Entity):
 '''
 :ivar str message:
 Broadcast message.
 '''

 __slots__ = [
 'message',
]

 © Copyright 2014, Fabio Menegazzo.
 Created using Sphinx 1.3.5.

_static/minus.png

_modules/travispy/entities/job.html

 Navigation

 		
 index

 		
 modules |

 		TravisPy 0.3.5 documentation »

 		Module code »

 Source code for travispy.entities.job

from ._restartable import Restartable
from datetime import datetime

[docs]class Job(Restartable):
 '''
 :ivar int build_id:
 Build ID.

 :ivar int repository_id:
 Repository ID.

 :ivar int commit_id:
 Commit ID.

 :ivar int log_id:
 Log ID.

 :ivar str number:
 Job number.

 :ivar dict config:
 Job config (secure values and ssh key removed). It comes from ``.travis.yml`` file.

 :ivar str started_at:
 Time the job was started.

 :ivar str finished_at:
 Time the job finished.

 :ivar str duration:
 Job duration. It might not correspond to :attr:`finished_at` - :attr:`started_at` if the
 job was restarted at a later point.

 :ivar str queue:
 Job queue.

 :ivar bool allow_failure:
 Whether or not the job state influences build state.

 :ivar list(int) annotation_ids:
 List of annotation IDs.

 :ivar Commit commit:
 :class:`.Commit` information.
 '''

 __slots__ = [
 'build_id',
 'repository_id',
 'commit_id',
 'log_id',
 'number',
 'config',
 'started_at',
 'finished_at',
 'duration',
 'queue',
 'allow_failure',
 'annotation_ids',
 'commit',
]

 _FIND_MANY_EXCLUSIVE_PARAMETERS = ['ids', 'state', 'queue']

 @property
 def build(self):
 '''
 :rtype: :class:`.Build`
 :returns:
 A :class:`.Build` object with information related to current ``build_id``.
 '''
 from .build import Build
 return self._load_one_lazy_information(Build)

 @property
 def repository(self):
 '''
 :rtype: :class:`.Repo`
 :returns:
 A :class:`.Repo` object with information related to current ``repository_id``.
 '''
 from .repo import Repo
 return self._load_one_lazy_information(Repo, 'repository_id')

 @property
 def log(self):
 '''
 :rtype: :class:`.Log`
 :returns:
 A :class:`.Log` object with information related to current ``log_id``.
 '''
 from .log import Log
 return self._load_one_lazy_information(Log)

 @classmethod
 def find_one(cls, session, entity_id, **kwargs):
 result = super(Job, cls).find_one(session, entity_id, **kwargs)
 if result is not None and not hasattr(result, 'duration'):
 format_ = '%Y-%m-%dT%H:%M:%SZ'

 started_at = result.started_at
 started_at = \
 datetime.strptime(started_at, format_) \
 if started_at is not None \
 else datetime.now()

 finished_at = result.finished_at
 finished_at = \
 datetime.strptime(finished_at, format_) \
 if finished_at is not None \
 else datetime.now()

 td = finished_at - started_at
 td = round((td.microseconds + (td.seconds + td.days * 24 * 3600) * 10 ** 6) / 10 ** 6)
 setattr(result, 'duration', int(td))
 return result

 © Copyright 2014, Fabio Menegazzo.
 Created using Sphinx 1.3.5.

_modules/travispy/entities/account.html

 Navigation

 		
 index

 		
 modules |

 		TravisPy 0.3.5 documentation »

 		Module code »

 Source code for travispy.entities.account

from ._entity import Entity

[docs]class Account(Entity):
 '''
 A user might have access to multiple accounts. This is usually the account corresponding to the
 user directly and one account per |github| organization.

 :ivar str name:
 User or organization id.

 :ivar str login:
 Account name on |github|.

 :ivar str type:
 Account login on |github|.

 :ivar int repos_count:
 Number of repositories.

 :ivar bool subscribed:
 Whether or not the account has a valid subscription.
 Only available on *Travis Pro*.

 :ivar str avatar_url:
 Link to avatar.
 '''

 __slots__ = [
 'name',
 'login',
 'type',
 'repos_count',
 'subscribed',
 'avatar_url',
]

 © Copyright 2014, Fabio Menegazzo.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/comment.png

_static/comment-close.png

_static/up.png

_static/down.png

_modules/travispy/entities/repo.html

 Navigation

 		
 index

 		
 modules |

 		TravisPy 0.3.5 documentation »

 		Module code »

 Source code for travispy.entities.repo

from ._stateful import Stateful

[docs]class Repo(Stateful):
 '''
 :ivar str slug:
 Repository slug.

 :ivar str description:
 Description on |github|.

 :ivar int last_build_id:
 Build ID of the last executed build.

 :ivar str last_build_number:
 Build number of the last executed build.

 :ivar str last_build_state:
 Build state of the last executed build.

 :ivar str last_build_duration:
 Build duration of the last executed build.

 :ivar str last_build_started_at:
 Build started at of the last executed build.

 :ivar str last_build_finished_at:
 Build finished at of the last executed build.

 :ivar str github_language:
 Language on |github|.

 :ivar bool active:
 Whether or not the repository is active on |travisci|.
 '''

 __slots__ = [
 'slug',
 'description',
 'last_build_id',
 'last_build_number',
 'last_build_state',
 'last_build_duration',
 'last_build_started_at',
 'last_build_finished_at',
 'last_build_language',
 'github_language',
 'active',
]

 @property
 def state(self):
 '''
 :class:`.Repo` state is given through ``last_build_state``.

 .. seealso:: :class:`.Stateful` for ``state`` full documentation.
 '''
 return self.last_build_state

 @property
 def last_build(self):
 '''
 :rtype: :class:`.Build`
 :returns:
 A :class:`.Build` object with information related to current ``last_build_id``.
 '''
 from .build import Build
 return self._load_one_lazy_information(Build, 'last_build_id')

 @classmethod
 def find_one(cls, session, entity_id, **kwargs):
 result = super(Repo, cls).find_one(session, entity_id, **kwargs)
 return result

 def _set_hook(self, flag):
 response = self._session.put(
 self._session.uri + '/hooks/{}'.format(self.id),
 json={"hook": {"active": flag}},
)
 result = response.status_code == 200
 if result:
 self.active = flag
 return result

[docs] def disable(self):
 '''
 Disable Travis CI for the repository.

 :rtype: bool
 :returns:
 ``True`` if API call was successful.
 ``False`` if API call was unsuccessful.
 '''
 return self._set_hook(False)

[docs] def enable(self):
 '''
 Enable Travis CI for the repository

 :rtype: bool
 :returns:
 ``True`` if API call was successful
 ``False`` if API call was unsuccessful
 '''
 return self._set_hook(True)

 © Copyright 2014, Fabio Menegazzo.
 Created using Sphinx 1.3.5.

_modules/travispy/entities/user.html

 Navigation

 		
 index

 		
 modules |

 		TravisPy 0.3.5 documentation »

 		Module code »

 Source code for travispy.entities.user

from ._entity import Entity

[docs]class User(Entity):
 '''
 :ivar str login:
 User login on |github|.

 :ivar str name:
 User name on |github|.

 :ivar str email:
 Primary email address on |github|.

 :ivar str gravatar_id:
 Avatar ID.

 :ivar bool is_syncing:
 Whether or not user account is currently being synced.

 :ivar str synced_at:
 Last synced at.

 :ivar bool correct_scopes:
 Whether or not |github| token has the correct scopes.

 :ivar str channels:
 Pusher channels for this user.

 :ivar str created_at:
 When account was created.

 :ivar str locale:
 User main locale.
 '''

 __slots__ = [
 'login',
 'name',
 'email',
 'gravatar_id',
 'is_syncing',
 'synced_at',
 'correct_scopes',
 'channels',
 'created_at',
 'locale',
]

[docs] def sync (self):
 '''
 Triggers a new sync with GitHub. Might return status 409 if user is currently syncing.

 :rtype: bool
 :returns:
 ``True`` if sync request was send successfuly to |travisci| and response code is 200
 ``False`` if a sync is already is progress
 '''
 response = self._session.post(self._session.uri + '/users/sync')
 return response.status_code == 200

 © Copyright 2014, Fabio Menegazzo.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		
 modules |

 		TravisPy 0.3.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Fabio Menegazzo.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		TravisPy 0.3.5 documentation »

 All modules for which code is available

		travispy.entities._entity

		travispy.entities._restartable

		travispy.entities._stateful

		travispy.entities.account

		travispy.entities.branch

		travispy.entities.broadcast

		travispy.entities.build

		travispy.entities.commit

		travispy.entities.hook

		travispy.entities.job

		travispy.entities.log

		travispy.entities.repo

		travispy.entities.user

		travispy.travispy

 © Copyright 2014, Fabio Menegazzo.
 Created using Sphinx 1.3.5.

_modules/travispy/travispy.html

 Navigation

 		
 index

 		
 modules |

 		TravisPy 0.3.5 documentation »

 		Module code »

 Source code for travispy.travispy

'''
.. data:: PUBLIC
 :annotation: = URI for Travis CI free service.

.. data:: PRIVATE
 :annotation: = URI for Travis CI paid service for GitHub private repositories.

.. data:: ENTERPRISE
 :annotation: = URI template for Travis CI service running under a personal domain. Usage will be
 something like ENTERPRISE % {'domain': 'http://travis.example.com'}.
'''
from ._helpers import get_response_contents
from .entities import Account, Branch, Broadcast, Build, Hook, Job, Log, Repo, Session, User
import requests

PUBLIC = 'https://api.travis-ci.org'
PRIVATE = 'https://api.travis-ci.com'

Replace "domain" with the domain TravisCI is running on.
ENTERPRISE % {'domain': 'http://travis.example.com'}
ENTERPRISE = '%(domain)s/api'

[docs]class TravisPy:
 '''
 Instances of this class are responsible for comunicating with |travisci|, sending requests and
 handling responses properly. You can create as much instances as you want since each one will
 create a separated session.

 :type token: str | None
 :param token:
 |travisci| token linked to your |github| account.

 Even if you have a public repository, some information are related to your user account
 and not the repository itself so if token is not provided an error will be returned.

 Required for private and enterprise repositories to access any information.

 :type uri: :data:`PUBLIC` | :data:`PRIVATE` | :data:`ENTERPRISE` | str
 :param uri:
 URI where Travis CI service is running.

 .. note::
 Do not confuse ``token`` with the one found on your profile page.
 '''

 _HEADERS = {
 'User-Agent': 'TravisPy',
 'Accept': 'application/vnd.travis-ci.2+json',
 }

 def __init__(self, token=None, uri=PUBLIC):
 self._session = session = Session(uri)
 session.headers.update(self._HEADERS)
 if token is not None:
 session.headers['Authorization'] = 'token %s' % token

 @classmethod
[docs] def github_auth(cls, token, uri=PUBLIC):
 '''
 :param str token:
 GitHub access token.

 :param uri:
 See :meth:`__init__`

 :rtype: :class:`.TravisPy`
 :returns:
 A :class:`.TravisPy` instance authenticated with GitHub account.

 :raises TravisError: when authentication against GitHub fails.
 '''
 response = requests.post(uri + '/auth/github', headers=cls._HEADERS, params={
 "github_token": token,
 })
 contents = get_response_contents(response)
 access_token = contents['access_token']
 return TravisPy(access_token, uri)

[docs] def accounts(self, all=False):
 '''
 :param bool all:
 Whether or not to include accounts the user does not have admin access to.

 :rtype: list(:class:`.Account`)
 :returns:
 Information of all accounts that the user might have access.This is usually the account
 corresponding to the user directly and one account per |github| organization.

 .. note::
 This request always needs to be authenticated.
 '''
 return Account.find_many(self._session, all=all)

[docs] def account(self, account_id):
 '''
 :param int account_id:
 ID of the account to obtain information.

 :rtype: :class:`.Account`

 .. note::
 This request always needs to be authenticated.
 '''
 for account in self.accounts(all=True):
 if account.id == account_id:
 return account

[docs] def branches(self, **kwargs):
 '''
 :keyword int repository_id:
 Repository id the build belongs to.

 :keyword str slug:
 Repository slug the build belongs to.

 :rtype: list(:class:`.Branch`)

 .. note::
 You have to supply either ``repository_id`` or ``slug``.
 '''
 return Branch.find_many(self._session, **kwargs)

[docs] def branch(self, name, repo_id_or_slug, **kwargs):
 '''
 :param str name:
 Branch name that should be retrieved.

 :type repo_id_or_slug: int | str
 :param repo_id_or_slug:
 Repository where branch is located.

 :rtype: :class:`.Branch`
 '''
 kwargs['repo_id_or_slug'] = repo_id_or_slug
 return Branch.find_one(self._session, name, **kwargs)

[docs] def broadcasts(self):
 '''
 :rtype: list(:class:`.Broadcast`)

 .. note::
 This request always needs to be authenticated.
 '''
 return Broadcast.find_many(self._session)

[docs] def builds(self, **kwargs):
 '''
 :keyword list(int) ids:
 List of build ids to fetch.

 :keyword int repository_id:
 Repository id the build belongs to.

 :keyword str slug:
 Repository slug the build belongs to.

 :keyword str number:
 Filter by build number, requires ``slug`` or ``repository_id``.

 :keyword str after_number:
 List build after a given build number (use for pagination), requires ``slug`` or
 ``repository_id``.

 :keyword str event_type:
 Limit build to given event type (``push`` or ``pull_request``).

 :rtype: list(:class:`.Build`)

 .. note::
 You have to supply either ``ids``, ``repository_id`` or ``slug``.
 '''
 return Build.find_many(self._session, **kwargs)

[docs] def build(self, build_id):
 '''
 :param int build_id:
 ID of the build to obtain information.

 :rtype: :class:`.Build`
 '''
 return Build.find_one(self._session, build_id)

[docs] def hooks(self):
 '''
 :rtype: list(:class:`.Hook`)
 :returns:
 Returns list of existing hooks that user have access.

 .. note::
 This request always needs to be authenticated.
 '''
 return Hook.find_many(self._session)

[docs] def jobs(self, **kwargs):
 '''
 :keyword list(int) ids:
 List of jobs IDs.

 :keyword str state:
 Job state to filter by. Possible values are ``passed``, ``canceled``, ``failed`` and
 ``errored``.

 :keyword str queue:
 Job queue to filter by.

 :rtype: list(:class:`.Job`)

 .. note::
 You need to provide exactly one of the above parameters. If you provide ``state`` or
 ``queue``, a maximum of 250 jobs will be returned.
 '''
 return Job.find_many(self._session, **kwargs)

[docs] def job(self, job_id):
 '''
 :param int job_id:
 ID of the job to obtain information.

 :rtype: :class:`.Job`
 '''
 return Job.find_one(self._session, job_id)

[docs] def log(self, log_id):
 '''
 :param int log_id:
 ID of the log to obtain information.

 :rtype: :class:`.Log`
 '''
 return Log.find_one(self._session, log_id)

[docs] def repos(self, **kwargs):
 '''
 :keyword list(int) ids:
 List of repository ids to fetch, cannot be combined with other parameters.

 :keyword str member:
 Filter by user that has access to it (|github| login).

 :keyword str owner_name:
 Filter by owner name (first segment of slug).

 :keyword str slug:
 Filter by slug.

 :keyword str search:
 Filter by search term.

 :keyword bool active:
 If ``True``, will only return repositories that are enabled. Default is ``False``.

 :rtype: list(:class:`.Repo`)

 .. note::
 If no parameters are given, a list of repositories with recent activity is returned.
 '''
 return Repo.find_many(self._session, **kwargs)

[docs] def repo(self, id_or_slug):
 '''
 :type id_or_slug: int | str
 :param id_or_slug:
 ID of slug of repository to obtain information.

 :rtype: :class:`.Repo`
 '''
 return Repo.find_one(self._session, id_or_slug)

[docs] def user(self):
 '''
 :rtype: :class:`.User`
 :returns:
 Information about user currently logged in.

 .. note::
 This request always needs to be authenticated.
 '''
 return User.find_one(self._session, '')

 © Copyright 2014, Fabio Menegazzo.
 Created using Sphinx 1.3.5.

_modules/travispy/entities/_restartable.html

 Navigation

 		
 index

 		
 modules |

 		TravisPy 0.3.5 documentation »

 		Module code »

 Source code for travispy.entities._restartable

from ._stateful import Stateful

[docs]class Restartable(Stateful):
 '''
 Base class for restartable entities such as :class:`.Build` and :class:`.Job`.
 '''

[docs] def cancel(self):
 '''
 Method responsible for canceling current action of this object.

 :rtype: bool
 :returns:
 ``True`` if cancel request was send successfuly to |travisci|.
 '''
 response = self._session.post(self._session.uri + '/%s/%d/cancel' % (self.many(), self.id))
 return response.status_code == 204

[docs] def restart(self):
 '''
 Method responsible for restarting the last action executed by this action.

 :rtype: bool
 :returns:
 ``True`` if restart request was send successfuly to |travisci|.
 '''
 response = self._session.post(self._session.uri + '/%s/%d/restart' % (self.many(), self.id))
 contents = response.json()
 return contents['result']

 © Copyright 2014, Fabio Menegazzo.
 Created using Sphinx 1.3.5.

_modules/travispy/entities/commit.html

 Navigation

 		
 index

 		
 modules |

 		TravisPy 0.3.5 documentation »

 		Module code »

 Source code for travispy.entities.commit

from ._entity import Entity

[docs]class Commit(Entity):
 '''
 There is no API endpoint for resolving commits, however commit data might be included in other
 API entities, like :class:`.Build` or :class:`.Job`.

 :ivar str sha:
 Commit SHA.

 :ivar str branch:
 Branch the commit is on.

 :ivar str message:
 Commit message.

 :ivar str committed_at:
 Commit date.

 :ivar str author_name:
 Author name.

 :ivar str author_email:
 Author email.

 :ivar str committer_name:
 Committer name.

 :ivar str committer_email:
 Committer email.

 :ivar str compare_url:
 Link to diff on GitHub.

 :ivar str tag:
 Tag name.

 :ivar int pull_request_number:
 Pull request number.
 '''

 __slots__ = [
 'sha',
 'branch',
 'message',
 'committed_at',
 'author_name',
 'author_email',
 'committer_name',
 'committer_email',
 'compare_url',
 'tag',
 'pull_request_number',
]

 © Copyright 2014, Fabio Menegazzo.
 Created using Sphinx 1.3.5.

_modules/travispy/entities/_entity.html

 Navigation

 		
 index

 		
 modules |

 		TravisPy 0.3.5 documentation »

 		Module code »

 Source code for travispy.entities._entity

from warnings import warn

from travispy._helpers import get_response_contents

[docs]class Entity(object):
 '''
 Base class for all |travisci| entities.

 :type session: :class:`.Session`
 :param session:
 Internet session in which entity information will be requested.

 :ivar int id:
 The entity ID.
 '''

 __slots__ = [
 'id',
 '_session',
 '__cache',
]

 def __init__(self, session):
 self._session = session

 # A dictionary used to cache objects loaded from lazy information.
 self.__cache = {}

 @classmethod
[docs] def one(cls):
 '''
 :rtype: str
 :returns:
 String representation for a single entity.
 Example: for :class:`.Account` will be ``account``.
 '''
 return cls.__name__.lower()

 @classmethod
[docs] def many(cls):
 '''
 :rtype: str
 :returns:
 String representation for multiple entities.
 Example: for :class:`.Account` will be ``accounts``.
 '''
 return cls.one() + 's'

 @classmethod
 def _find_one_command(cls, command, entity_id, **kwargs):
 '''
 :param str command:
 Command name.

 :type entity_id: int | str
 :param entity_id:
 Entity identification.

 :rtype: str
 :returns:
 API command for retrieving one object.
 '''
 return '/%s/%s' % (command, entity_id,)

 @classmethod
[docs] def find_one(cls, session, entity_id, **kwargs):
 '''
 Method responsible for returning exactly one instance of current class.

 :type session: :class:`.Session`
 :param session:
 Session that must be used to search for result.

 :param int entity_id:
 The ID of the entity.

 :rtype: :class:`.Entity`

 :raises TravisError: when response has status code different than 200.
 '''
 from travispy.entities import COMMAND_TO_ENTITY

 command = cls.one()
 response = session.get(
 session.uri +
 cls._find_one_command(cls.many(), str(entity_id), **kwargs)
)

 contents = get_response_contents(response)
 if command not in contents:
 return

 info = contents.pop(command, {})
 result = cls._load(info, session)[0]

 for name in contents.keys():

 # Unknown entity.
 if name not in COMMAND_TO_ENTITY:
 continue

 entity_class = COMMAND_TO_ENTITY[name]
 dependency = entity_class._load(contents[name], session)
 if name == entity_class.one():
 dependency = dependency[0]

 setattr(result, name, dependency)

 return result

 # Constant that holds parameter names that should be exclusive.
 # That means no more than one of these values may be given.
 _FIND_MANY_EXCLUSIVE_PARAMETERS = []

 @classmethod
[docs] def find_many(cls, session, **kwargs):
 '''
 Method responsible for returning as many as possible matches for current class.

 :type session: :class:`.Session`
 :param session:
 Session that must be used to search for results.

 :rtype: list(:class:`.Entity`)

 :raises TravisError: when response has status code different than 200.
 '''
 from travispy.entities import COMMAND_TO_ENTITY

 count = 0
 for param in cls._FIND_MANY_EXCLUSIVE_PARAMETERS:
 if param in kwargs:
 count += 1

 if count != 1 and len(cls._FIND_MANY_EXCLUSIVE_PARAMETERS) > 0:
 exclusive_parameters = '", "'.join(cls._FIND_MANY_EXCLUSIVE_PARAMETERS)
 raise RuntimeError('You have to supply either "%s".' % exclusive_parameters)

 command = cls.many()
 response = session.get(session.uri + '/%s' % command, params=kwargs)

 dependencies_result = {}
 contents = get_response_contents(response)

 # Retrieving information from Travis and loading into respective classes.
 infos = contents.pop(command, [])
 result = cls._load(infos, session)

 for name in contents.keys():
 entity_class = COMMAND_TO_ENTITY[name]
 dependencies_result[entity_class.one()] = \
 entity_class._load(contents[name], session)

 # Injecting dependencies into main objects.
 for i, entity in enumerate(result):
 for dependency_name, dependencies in dependencies_result.items():
 setattr(entity, dependency_name, dependencies[i])

 return result

 @classmethod
 def _load(cls, infos, session):
 '''
 Method responsible for creating objects of current class using given ``infos``
 to fill them.

 :type infos: dict | list(dict)
 :param infos:
 JSON information returned by Travis API.

 :param :class:`.Session` session:
 Session that must be given to created objects.

 :rtype: list(:class:`.Entity`)
 :returns:
 List of object filled with given ``infos``.
 '''
 if not isinstance(infos, list):
 infos = [infos]

 result = []
 for info in infos:
 entity = cls(session)
 for key, value in info.items():
 # Log.body from Travis is empty, and is fetched on demand.
 if key == 'body' and info['type'] == 'Log':
 if value == '':
 continue
 else:
 key = '_body'
 try:
 setattr(entity, key, value)
 except AttributeError:
 warn('Unknown {0} attribute {1}'
 .format(entity.__class__.__name__, key))
 result.append(entity)

 return result

 def _load_lazy_information(self, lazy_information, cache_name, load_method, load_kwarg):
 '''
 Some |travisci| entities stores lazy information (or references) to other entities that they
 have a relationship. Consider :class:`.Build`: it has a reference to its :class:`.Repo`
 container through the attribute ``repository_id`` and other reference to the :class:`.Jobs`
 within it (through ``job_ids``).

 This method is responsible for loading a requested ``lazy_information`` and returning it as
 objects. Also it creates an internal cache so if it is requested more than once, the same
 result will be returned.

 Cache will be updated whenever attribute related to the given ``lazy_information`` is
 changed.

 :param str lazy_information:
 Attribute name where lazy information is stored.

 :param str cache_name:
 Name that will be used to store loaded information.

 .. note::
 Cache will not be accessible from outside the object itself.

 :param callable load_method:
 Method or function that will be used to load lazy information. It must support two
 parameters:

 * :class:`.Session` object (which will be the same as its "parent")
 * ``load_kwarg`` which will receive the stored lazy information

 :param str load_kwarg:
 Name of keyword argument that will be used within ``load_method``.

 :returns:
 The information loaded from stored lazy information. The return type will vary depending
 on what ``load_method`` returns.

 .. seealso:: :meth:`.find_one`
 .. seealso:: :meth:`.find_many`
 '''
 cache = self.__cache

 cached_property_name = 'cached_%s' % cache_name
 cached_property_ref_name = 'cached_%s' % lazy_information

 property_ref = getattr(self, lazy_information)
 if cache.get(cached_property_ref_name) == property_ref:
 return cache[cached_property_name]

 result = load_method(self._session, **{load_kwarg: property_ref})

 # If no result was found, current cache will be deleted.
 if not result:

 if cached_property_ref_name in cache:
 del cache[cached_property_ref_name]

 if cached_property_name in cache:
 del cache[cached_property_name]

 # Valid result should be stored in cache.
 else:
 cache[cached_property_ref_name] = property_ref
 cache[cached_property_name] = result

 return result

 def _load_one_lazy_information(self, entity_class, lazy_information=None):
 '''
 Method responsible for searching one ``entity_class`` based on related ``lazy_information``.

 :type lazy_information: str | None
 :param lazy_information:
 When lazy information is not provided it will be built automatically based on given
 `` entity_class``. See more at :meth:`._load_lazy_information`.

 :rtype: ``entity_class`` instance
 :returns:
 The information loaded from stored lazy information.

 .. seealso:: :meth:`._load_lazy_information`
 '''
 if lazy_information is None:
 lazy_information = '%s_id' % entity_class.one()

 return self._load_lazy_information(
 lazy_information,
 entity_class.one(),
 entity_class.find_one,
 'entity_id',
)

 def _load_many_lazy_information(self, entity_class, lazy_information=None):
 '''
 Method responsible for searching many ``entity_class`` based on related
 ``lazy_information``.

 :type lazy_information: str | None
 :param lazy_information:
 When lazy information is not provided it will be built automatically based on given
 ``entity_class``. See more at :meth:`._load_lazy_information`.

 :rtype: list(``entity_class`` instance)
 :returns:
 The information loaded from stored lazy information.

 .. seealso:: :meth:`._load_lazy_information`
 '''
 if lazy_information is None:
 lazy_information = '%s_ids' % entity_class.one()

 return self._load_lazy_information(
 lazy_information,
 entity_class.many(),
 entity_class.find_many,
 'ids',
)

 def __getitem__(self, key):
 return getattr(self, key)

 © Copyright 2014, Fabio Menegazzo.
 Created using Sphinx 1.3.5.

_modules/travispy/entities/build.html

 Navigation

 		
 index

 		
 modules |

 		TravisPy 0.3.5 documentation »

 		Module code »

 Source code for travispy.entities.build

from ._restartable import Restartable

[docs]class Build(Restartable):
 '''
 :ivar int repository_id:
 Repository ID.

 :ivar str commit_id:
 Commit ID.

 :ivar str number:
 Build number.

 :ivar bool pull_request:
 Whether or not the build comes from a pull request.

 :ivar str pull_request_title:
 PR title if :attr:`pull_request` is ``True``.

 :ivar str pull_request_number:
 PR number if :attr:`pull_request` is ``True``.

 :ivar dict config:
 Build config (secure values and ssh key removed). It comes from ``.travis.yml`` file.

 :ivar str started_at:
 Time the build was started.

 :ivar str finished_at:
 Time the build finished.

 :ivar str duration:
 Build duration. It might not correspond to :attr:`finished_at` - :attr:`started_at` if the
 build was restarted at a later point.

 :ivar list(int) job_ids:
 List of job IDs in the build matrix.

 :ivar list(Job) jobs:
 List of :class:`.Job` in the build matrix.

 :ivar Commit commit:
 :class:`.Commit` information.
 '''

 __slots__ = [
 'repository_id',
 'commit_id',
 'number',
 'pull_request',
 'pull_request_title',
 'pull_request_number',
 'config',
 'started_at',
 'finished_at',
 'duration',
 'job_ids',
 'jobs',
 'commit',
]

 _FIND_MANY_EXCLUSIVE_PARAMETERS = ['ids', 'repository_id', 'slug']

 @property
 def repository(self):
 '''
 :rtype: :class:`.Repo`
 :returns:
 A :class:`.Repo` object with information related to current ``repository_id``.
 '''
 from .repo import Repo
 return self._load_one_lazy_information(Repo, 'repository_id')

 © Copyright 2014, Fabio Menegazzo.
 Created using Sphinx 1.3.5.

_modules/travispy/entities/branch.html

 Navigation

 		
 index

 		
 modules |

 		TravisPy 0.3.5 documentation »

 		Module code »

 Source code for travispy.entities.branch

from ._stateful import Stateful

[docs]class Branch(Stateful):
 '''
 :ivar int repository_id:
 Repository ID.

 :ivar str commit_id:
 Commit ID.

 :ivar str number:
 Build number.

 :ivar dict config:
 Build config (secure values and ssh key removed). It comes from ``.travis.yml`` file.

 :ivar str started_at:
 Time the build was started.

 :ivar str finished_at:
 Time the build finished.

 :ivar str duration:
 Build duration. It might not correspond to :attr:`finished_at` - :attr:`started_at` if the
 build was restarted at a later point.

 :ivar list(int) job_ids:
 List of job IDs in the build matrix.

 :ivar bool pull_request:
 Whether or not the build comes from a pull request.

 :ivar Commit commit:
 :class:`.Commit` information.
 '''

 __slots__ = [
 'repository_id',
 'commit_id',
 'number',
 'config',
 'started_at',
 'finished_at',
 'duration',
 'job_ids',
 'pull_request',
 'commit',
]

 @property
 def repository(self):
 '''
 :rtype: :class:`.Repo`
 :returns:
 A :class:`.Repo` object with information related to current ``repository_id``.
 '''
 from .repo import Repo
 return self._load_one_lazy_information(Repo, 'repository_id')

 @property
 def jobs(self):
 '''
 :rtype: list(:class:`.Job`)
 :returns:
 A list of :class:`.Job` objects with information related to current ``job_ids``.
 '''
 from .job import Job
 return self._load_many_lazy_information(Job)

 _FIND_MANY_EXCLUSIVE_PARAMETERS = ['repository_id', 'slug']

 @classmethod
 def many(cls):
 return 'branches'

 @classmethod
 def _find_one_command(cls, command, entity_id, **kwargs):
 repo_id_or_slug = kwargs['repo_id_or_slug']
 return '/repos/%s/%s/%s' % (repo_id_or_slug, cls.many(), entity_id)

 © Copyright 2014, Fabio Menegazzo.
 Created using Sphinx 1.3.5.

